Skip to main content

Scalable Approximate Computing Techniques for Latency and Bandwidth Constrained IoT Edge

  • Conference paper
  • First Online:
Science and Technologies for Smart Cities (SmartCity360° 2020)

Abstract

Machine vision applications at the IoT Edge have bandwdith and latency constraints due to large sizes of video data. In this paper we propose approximate computing, that trades off inference accuracy with video frame size, as a potential solution. We present a number of low compute overhead video frame modifications that can reduce the video frame size, while achieving acceptable levels of inference accuracy. We present, a heuristic based design space pruning, and a Categorical boost based machine learning model as two approaches to achieve scalable performance in determining the appropriate video frame modifications that satisfy design constraints. Experimental results on an object detection application on the Microsoft COCO 2017 data set, indicates that proposed methods were able to reduce the video frame size by upto 71.3% while achieving an inference accuracy of 80.9% of that of the unmodified video frames. The machine learning model has a high training cost, but has a lower inference time, and is scalable and flexible compared to the heuristic design space pruning algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Catboost. https://catboost.ai/. Accessed 12 Sep 2020

  2. Efficientdet. https://github.com/google/automl/tree/master/efficientdet. Accessed 12 Sep 2020

  3. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for Internet of Things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7

    Chapter  Google Scholar 

  4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC 2012, pp. 13–16. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2342509.2342513

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  6. Canel, C., et al.: Scaling video analytics on constrained edge nodes. In: Proceedings of the 2nd SysML Conference (SysML 2019), Palo Alto, CA, pp. 1–5 (2019)

    Google Scholar 

  7. Chen, C., Choi, J., Gopalakrishnan, K., Srinivasan, V., Venkataramani, S.: Exploiting approximate computing for deep learning acceleration. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 821–826 (2018)

    Google Scholar 

  8. Chen, M., Challita, U., Saad, W., Yin, C., Debbah, M.: Artificial neural networks-based machine learning for wireless networks: a tutorial. IEEE Commun. Surv. Tutor. 21(4), 3039–3071 (2019)

    Article  Google Scholar 

  9. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939785

  10. Deb, K., Kalyanmoy, D.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, USA (2001)

    MATH  Google Scholar 

  11. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J. 7(8), 7457–7469 (2020)

    Article  Google Scholar 

  12. Dorogush, A.V., Ershov, V., Gulin, A.: CatBoost: gradient boosting with categorical features support. ArXiv abs/1810.11363 (2018)

    Google Scholar 

  13. Evgeniou, T., Pontil, M.: Support vector machines: theory and applications. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, pp. 249–257. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44673-7_12

    Chapter  MATH  Google Scholar 

  14. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

    Article  MathSciNet  MATH  Google Scholar 

  15. George, A., Ravindran, A.: Latency control for distributed machine vision at the edge through approximate computing. In: Zhang, T., Wei, J., Zhang, L.-J. (eds.) EDGE 2019. LNCS, vol. 11520, pp. 16–30. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23374-7_2

    Chapter  Google Scholar 

  16. Ibrahim, A., Osta, M., Alameh, M., Saleh, M., Chible, H., Valle, M.: Approximate computing methods for embedded machine learning. In: 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 845–848 (2018)

    Google Scholar 

  17. Joseph, V.R., Hung, Y.: Orthogonal-maximin Latin hypercube designs. Statistica Sinica 18(1), 171–186 (2008). http://www.jstor.org/stable/24308251

  18. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: NIPS (2017)

    Google Scholar 

  19. Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Des. Test 31(3), 8–20 (2014)

    Article  Google Scholar 

  20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Mao, Q., Hu, F., Hao, Q.: Deep learning for intelligent wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutor. 20(4), 2595–2621 (2018)

    Article  Google Scholar 

  22. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979). http://www.jstor.org/stable/1268522

  23. McKay, M.D.: Latin hypercube sampling as a tool in uncertainty analysis of computer models. In: Proceedings of the 24th Conference on Winter Simulation, WSC 1992, pp. 557–564. Association for Computing Machinery, New York (1992). https://doi.org/10.1145/167293.167637

  24. Mittal, S.: A survey of techniques for approximate computing. ACM Comput. Surv. 48(4), 1–33 (2016). https://doi.org/10.1145/2893356

    Article  Google Scholar 

  25. Pakha, C., Chowdhery, A., Jiang, J.: Reinventing video streaming for distributed vision analytics. In: Proceedings of the 10th USENIX Conference on Hot Topics in Cloud Computing, HotCloud 2018, p. 1. USENIX Association, USA (2018)

    Google Scholar 

  26. Rasouli, A., Kotseruba, I., Tsotsos, J.K.: Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 206–213 (2017)

    Google Scholar 

  27. Rokach, L., Maimon, O.: Decision trees. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook. Springer, Boston (2005). https://doi.org/10.1007/0-387-25465-X_9

  28. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

    Article  Google Scholar 

  29. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE Internet Things J. 3(5), 637–646 (2016)

    Article  Google Scholar 

  30. Sun, Y., Peng, M., Zhou, Y., Huang, Y., Mao, S.: Application of machine learning in wireless networks: key techniques and open issues. IEEE Commun. Surv. Tutor. 21(4), 3072–3108 (2019)

    Article  Google Scholar 

  31. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10778–10787 (2020)

    Google Scholar 

  32. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR, Long Beach (09–15 June 2019). http://proceedings.mlr.press/v97/tan19a.html

  33. Vision, O.S.C.: OpenCV documentation (2019). https://docs.opencv.org

  34. Zhu, G., Liu, D., Du, Y., You, C., Zhang, J., Huang, K.: Toward an intelligent edge: wireless communication meets machine learning. IEEE Commun. Mag. 58(1), 19–25 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjus George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

George, A., Ravindran, A. (2021). Scalable Approximate Computing Techniques for Latency and Bandwidth Constrained IoT Edge. In: Paiva, S., Lopes, S.I., Zitouni, R., Gupta, N., Lopes, S.F., Yonezawa, T. (eds) Science and Technologies for Smart Cities. SmartCity360° 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 372. Springer, Cham. https://doi.org/10.1007/978-3-030-76063-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76063-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76062-5

  • Online ISBN: 978-3-030-76063-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics